A robust genomic signature for the detection of colorectal cancer patients with microsatellite instability phenotype and high mutation frequency#
نویسندگان
چکیده
Microsatellite instability (MSI) occurs in 10-20% of colorectal tumours and is associated with good prognosis. Here we describe the development and validation of a genomic signature that identifies colorectal cancer patients with MSI caused by DNA mismatch repair deficiency with high accuracy. Microsatellite status for 276 stage II and III colorectal tumours has been determined. Full-genome expression data was used to identify genes that correlate with MSI status. A subset of these samples (n = 73) had sequencing data for 615 genes available. An MSI gene signature of 64 genes was developed and validated in two independent validation sets: the first consisting of frozen samples from 132 stage II patients; and the second consisting of FFPE samples from the PETACC-3 trial (n = 625). The 64-gene MSI signature identified MSI patients in the first validation set with a sensitivity of 90.3% and an overall accuracy of 84.8%, with an AUC of 0.942 (95% CI, 0.888-0.975). In the second validation, the signature also showed excellent performance, with a sensitivity 94.3% and an overall accuracy of 90.6%, with an AUC of 0.965 (95% CI, 0.943-0.988). Besides correct identification of MSI patients, the gene signature identified a group of MSI-like patients that were MSS by standard assessment but MSI by signature assessment. The MSI-signature could be linked to a deficient MMR phenotype, as both MSI and MSI-like patients showed a high mutation frequency (8.2% and 6.4% of 615 genes assayed, respectively) as compared to patients classified as MSS (1.6% mutation frequency). The MSI signature showed prognostic power in stage II patients (n = 215) with a hazard ratio of 0.252 (p = 0.0145). Patients with an MSI-like phenotype had also an improved survival when compared to MSS patients. The MSI signature was translated to a diagnostic microarray and technically and clinically validated in FFPE and frozen samples.
منابع مشابه
سه موتاسیون ژرم لاین جدید در ژن MLH1 در بیماران مبتلا به سرطان کولورکتال ارثی
Abstract Background: Hereditary non-polyposis colorectal cancer is the most common cause of early onset of hereditary colorectal cancer. In the majority of Hereditary non-polyposis colorectal cancer families, microsatellite instability and germline mutation in one of the DNA mismatch repair genes in clouding MSH2, MLH1, MSH6 and PMS2 are found. The Objective of this study was to determine th...
متن کاملDetection of Microsatellite Instability by High-Resolution Melting Analysis in Colorectal Cancer
Background: Colorectal cancer (CRC) is the third most common cancer worldwide. microsatellite instability (MSI) is a molecular marker of a deficient mismatch repair system and happens in almost 15% of CRCs. Because of a wide frequency of MSI+ CRC in Iran compared to other parts of the world, the importance of screening for this type of cancer is highlighted. Methods: The most common MSI detecti...
متن کاملFrequency of c.1905+1G>A Mutation in DPD Gene among Patients with Colorectal Cancer in Mazandaran Province
Background and purpose: 5-Flourouracil (5-FU) is one of the most common chemical drugs used in chemotherapy of patients with cancers. Dihydropyrimidine dehydrogenase (DPD) is a critical enzyme in the catabolism of 5-FU. More than 80% of the administered 5-FU is catabolized by DPD. c.1905+1G>A mutation on DPD gene is the most important mutation associated with DPD enzymatic deficiency which lead...
متن کاملMicrosatellite instability, clinical implications, and new methodologies.
Boland et al. (1) noted that the discovery of microsatellite instability (MSI) (2) in colorectal cancers and its linkage to hereditary nonpolyposis colon cancer (HNPCC) in 1993, “. . . opened new chapters in tumor biology and in the clinical management of patients with heightened cancer susceptibility” (1). The scope of this discovery has now been expanded as a unique form of genomic instabilit...
متن کاملMolecular Analysis of Microsatellite Instability in Hereditary Non Polyposis Colon Carcinoma Patients from North-East Iran
Background and Objectives: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant cancer predisposition syndrome caused by germ-line mutations in DNA mismatch repair genes. Tumors arising as a result of these mutations display instability in a sequence area known as microsatellites. Studies have shown that some Bethesda markers (BAT25, BAT26) are more efficient than other...
متن کامل